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HOPF STRUCTURES ON THE HOPF QUIVER Q(〈g〉, g)

HUA-LIN HUANG, YU YE AND QING ZHAO

We investigate pointed Hopf algebras via quiver methods. We classify all the
possible Hopf structures arising from the simplest Hopf quiver Q(〈g〉, g),
which serves as a basic ingredient for the general ones. This provides the
very local structure information for the general pointed Hopf algebras.

1. Introduction

Quivers are oriented diagrams consisting of vertices and arrows. Due to a well-
known theorem of Gabriel [1972], elementary associative algebras over fields can
be presented by path algebras of quivers modulo admissible ideals in some unique
manner, with their representations given by representations of the corresponding
bound quivers. This makes the abstract algebras and their representation theory
visible and plays a central role in the modern representation theory of associative
algebras.

After Gabriel, quiver theory has been established for some other algebraic struc-
tures, in particular for coalgebras and Hopf algebras. A coalgebra over a field is
said to be pointed if its simple subcoalgebras are one-dimensional, or equivalently,
its simple comodules are one-dimensional. Chin and Montgomery [1997] gave a
Gabriel-type theorem for pointed coalgebras. Cibils and Rosso [2002] introduced
the notion of Hopf quivers, which are determined by groups with ramification data,
and observed that the path coalgebra of a quiver admits a graded Hopf structure
if and only if the quiver is a Hopf quiver. A Hopf algebra is called pointed if
its underlying coalgebra is so. Van Oystaeyen and Zhang [2004] established a
Gabriel-type theorem for graded pointed Hopf algebras.

These results motivate our project of studying general pointed Hopf algebras by
taking advantage of quiver methods. The quiver setting gives a visible frame to
the classification problem, representation theory, and other respects. The project
of quiver approaches to pointed Hopf algebras consists mainly of the following:
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(1) Classify graded Hopf structures on Hopf quivers. This amounts to a complete
classification of graded pointed Hopf algebras.

(2) Carry out a proper deformation process for graded Hopf structures to get the
general pointed Hopf algebras.

(3) With these Hopf algebras in hand, investigate their (co)representation theory
as well as other aspects with the help of their quiver presentation.

This paper is conceived as the first step of the project. We classify Hopf algebra
structures on the minimal Hopf quiver Q(〈g〉, g). Here 〈g〉 denotes a cyclic group
generated by g and Q(〈g〉, g) is a cyclic quiver if the order of g is finite, or the
infinite linear quiver if the order of g is infinite. Intuitively, it is easy to see that
a general Hopf quiver is a compatible combination of such minimal Hopf quivers.
Moreover, on a given Hopf quiver there is a clear relation between the sub-Hopf
algebras and sub-Hopf quivers, as can be seen from Cibils and Rosso’s description
[2002] of graded Hopf structures on Hopf quivers. Therefore, our result provides
the complete local structures needed for general pointed Hopf algebras.

Most of the Hopf structures arising from the Hopf quiver Q(〈g〉, g) are by
no means novel. They appear sporadically in various work on Hopf algebras,
for example [Taft 1971; Andruskiewitsch and Schneider 2002; Radford 1999],
and on quantum groups, for example [Lusztig 1990; De Concini and Kac 1990].
Quiver methods provide these Hopf algebras in a unified setting. Aside from quiver
techniques, our arguments also rely on Bergman’s diamond lemma [1978], which
helps to present the Hopf algebras by generators with relations. This is useful in
carrying out the preferred deformation procedure in the sense of Gerstenhaber and
Schack [1990].

Although our result settles the local structure of a general pointed Hopf algebra,
it is far from providing a full understanding of it, especially when the group of its
group-like elements is nonabelian. In the situation of finite-dimensional pointed
Hopf algebras with abelian group-likes, Andruskiewitsch and Schneider [2010]
have made substantial progress in the classification problem by a different method,
as they surveyed in [2002].

The paper is organized as follows. In Section 2 we review some necessary facts
about Hopf quivers and pointed Hopf algebras. In Sections 3 and 4, we give the
explicit classifications of Hopf structures on the cyclic quiver and the infinite linear
quiver, respectively. Section 5 is devoted to some applications of the classification
results.

Throughout the paper, we work over an algebraically closed field of characteris-
tic zero. See [Gabriel and Roiter 1997; Assem et al. 2006] for general knowledge
about quivers and representations, and [Sweedler 1969; Montgomery 1993] for
that of coalgebras and Hopf algebras.
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2. Quiver approaches to pointed Hopf algebras

For the convenience of the reader, we recall some basic notions and facts from
[Cibils and Rosso 2002; van Oystaeyen and Zhang 2004]. There is a dual approach
to elementary Hopf algebras via quivers; see [Cibils 1993; Green 1995; Cibils and
Rosso 1997; Green and Solberg 1998] for related work.

A quiver is a quadruple Q = (Q0, Q1, s, t), where Q0 is the set of vertices,
Q1 is the set of arrows, and s, t : Q1→ Q0 are two maps assigning respectively
the source and the target for each arrow. A path of length l ≥ 1 in the quiver Q
is a finitely ordered sequence of l arrows al · · · a1 such that s(ai+1) = t (ai ) for
1≤ i ≤ l − 1. By convention a vertex is said to be a trivial path of length 0.

The path coalgebra k Q is the k-space spanned by the paths of Q with counit
and comultiplication maps defined by ε(g)= 1 and 1(g)= g⊗g for each g ∈ Q0,
and ε(p)= 0 and

1(p)= p⊗ s(a1)+

n−1∑
i=1

an · · · ai+1⊗ ai · · · a1+ t (an)⊗ p

for each nontrivial path p= an · · · a1. The length of paths gives a natural gradation
on the path coalgebra. Let Qn denote the set of paths of length n in Q. Then
k Q =

⊕
n≥0 k Qn and 1(k Qn)⊆

⊕
n=i+ j k Qi ⊗ k Q j . Clearly k Q is pointed with

the set of group-likes G(k Q)= Q0, and has the coradical filtration

k Q0 ⊆ k Q0⊕ k Q1 ⊆ k Q0⊕ k Q1⊕ k Q2 ⊆ · · · .

Hence k Q is coradically graded.
Cibils and Rose [2002] call a quiver Q a Hopf quiver if the corresponding path

coalgebra k Q admits a graded Hopf algebra structure. Hopf quivers can be deter-
mined by ramification data of groups. Let G be a group and C the set of conjugacy
classes. A ramification datum R of the group G is a formal sum

∑
C∈C RCC of

conjugacy classes with coefficients in N= {0, 1, 2, . . . }. The corresponding Hopf
quiver Q = Q(G, R) is defined so that the set of vertices Q0 is G, and for each
x ∈ G and c ∈ C , there are RC arrows going from x to cx .

A Hopf quiver Q = Q(G, R) is connected if and only if the union of the con-
jugacy classes with nonzero coefficients in R generates G. We denote the unit
element of G by e. If R{e} 6= 0, then there are R{e}-loops attached to each vertex;
if the order of elements in a conjugacy class C 6= {e} is n and RC 6= 0, then
corresponding to these data in Q there is a subquiver (n, RC)-cycle (called basic
n-cycle if RC = 1), that is, the quiver having n vertices, indexed by the set of
integers modulo n, and RC arrows going from i to i + 1 for each i ; if the order
of elements in a conjugacy class C is∞, then in Q there is a subquiver RC -chain
(called infinite linear quiver if RC = 1), that is, a quiver having set of vertices
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indexed by the set of integral numbers, and RC arrows going from j to j + 1 for
each j . Therefore, basic cycles (including loop as 1-cycle) and the infinite linear
quiver are basic building blocks of the general Hopf quivers.

By [Cibils and Rosso 2002], for a given Hopf quiver Q, the set of graded Hopf
structures on k Q is in bijection with the set of k Q0-Hopf bimodule structures
on k Q1. The graded Hopf structures are obtained from Hopf bimodules via the
quantum shuffle product [Rosso 1998], and can be restricted to sub-Hopf quivers;
hence for the very local sub-Hopf structures it suffices to consider those arising
from the Hopf quivers of form Q(〈g〉, g).

Let H be a pointed Hopf algebra. Denote its coradical filtration by {Hn}
∞

n=0.
Define

gr(H)= H0⊕ H1/H0⊕ H2/H1⊕ · · ·

as the corresponding (coradically) graded coalgebra. Then gr(H) inherits from H
a coradically graded Hopf algebra structure; see for example [Montgomery 1993].
Any generating set of gr(H) (as an algebra) can be lifted to one for H ; this useful
fact can be verified easily by induction.

Lemma 2.1. Assume that G ⊂ gr(H) is a generating set and G̃ ⊂ H an arbitrary
set of its representatives. Then G̃ generates H.

The procedure of going from H to gr H is called degeneration. The converse
procedure is called deformation. According to Gerstenhaber and Schack [1990], a
coalgebra-preserving deformation is called preferred. If we want to classify all the
Hopf structures on the whole path coalgebra of a Hopf quiver, or the bialgebras
of type one [Nichols 1978], then we only need to carry out preferred deformation
procedure.

According to van Oystaeyen and Zhang [2004], if H is a coradically graded
pointed Hopf algebra, then there exists a unique Hopf quiver Q(H) such that
H can be realized as a large sub-Hopf algebra of a graded Hopf structure on
the path coalgebra k Q(H). Here by “large” we mean H contains the subspace
k Q(H)0⊕k Q(H)1. This Gabriel-type theorem allows us to classify pointed Hopf
algebras exhaustively in the quiver setting. The combinatorial structure of Hopf
quivers implies clearly a Cartier–Gabriel decomposition theorem (see for example
[Sweedler 1969; Montgomery 1993]) for general pointed Hopf algebras as given
by Montgomery [1995]. It suffices to study only Hopf structures on connected
Hopf quivers.

3. Hopf structures on basic cycles

Let G = 〈g | gn
= 1〉 be a cyclic group of order n and let Z denote the Hopf quiver

Q(G, g). The quiver Z is a basic n-cycle and this is the only possible way it is
realized as a Hopf quiver. If n= 1, then Z is the one-loop quiver, that is, it consists
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of one vertex and one loop. It is easy to see that such a quiver provides only the
familiar divided power Hopf algebra in one variable; this algebra is isomorphic to
the polynomial algebra in one variable.

From now on we assume n>1 and fix a basic n-cycle Z. For each integer i mod-
ulo n, let ai denote the arrow gi

→ gi+1. Let pl
i denote the path ai+l−1 · · · ai+1ai

of length l. Then {pl
i | 0≤ i ≤ n− 1, l ≥ 0} is a basis of kZ.

Before moving on, we fix some notations of Gaussian binomials. For any q ∈ k
and integers l,m ≥ 0, let

lq = 1+ q + · · ·+ ql−1, l!q = 1q · · · lq ,
( l+m

l

)
q
=
(l +m)!q
l!q m!q

.

When 1 6= q ∈ k is an n-th root of unity of order d ,( l+m
l

)
q
= 0 if and only if [(l +m)/d] − [m/d] − [l/d]> 0,

where [x] means the integer part of x .
We’ll need the following fact about automorphisms of the path coalgebra kZ.

Lemma 3.1. Let d > 1 be an integer and kZ[d] the subcoalgebra
⊕d

i=0 kZi . For
any λ ∈ k the linear map

f d
λ (0) : kZ[d] → kZ[d],

pl
i 7→ pl

i for all i, 0≤ l ≤ d − 1,

pd
0 7→ pd

0 + λ(1− gd),

pd
i 7→ pd

i for 1≤ i ≤ n− 1.

defines a coalgebra automorphism of kZ[d]. There is a coalgebra automorphism
Fd
λ (0) : kZ → kZ whose restriction to kZ[d] is f d

λ (0). A similar map f d
λ ( j)

can be defined and extended to Fd
λ ( j) for any j . Also, any automorphism of the

subcoalgebra kZ[d] whose restriction to kZ[d − 1] is the identity is a finite com-
position of some of the f d

λ ( j). Therefore all such automorphisms are extendable to
automorphisms of the path coalgebra kZ.

Proof. The claim that f d
λ (0) is a coalgebra automorphism is obvious. For the

second claim, define the map Fd
λ (0) :kZ→kZ by pl

i 7→ pl
i for all i and 0≤ l≤d−1,

by pd
0 7→ pd

0 + λ(1− gd), by pd
i 7→ pd

i for 1≤ i ≤ n− 1, and, for l > d , by

pl
i 7→


pl

0− λpl−d
d for i = 0, l 6= d (mod n),

pl
0+ λpl−d

0 − λpl−d
d for i = 0, l = d (mod n),

pl
i + λpl−d

i for 1≤ i ≤ n− 1, i + l = d (mod n),
pl

i for 1≤ i ≤ n− 1, i + l 6= d (mod n).

It is straightforward (but a bit tedious) to verify that Fd
λ (0) is the desired coalgebra

automorphism of kZ. The remaining claims are easy. �
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First we recall the graded Hopf structures on kZ. By [Cibils and Rosso 2002],
they are in bijection with the kG-module structures on ka0, and in turn with the
set of n-th roots of unity. For each q ∈ k with qn

= 1, let g .a0 = qa0 define a kG-
module. The corresponding kG-Hopf bimodule is kG⊗kG ka0⊗ kG = ka0⊗ kG.
We identify ai = a0⊗ gi . This is how we view kZ1 as a kG-Hopf bimodule. The
path multiplication formula

(3-1) pl
i · p

m
j = q im

( l+m
l

)
q

pl+m
i+ j .

was given in [Cibils and Rosso 2002] by induction. In particular,

(3-2) g · pl
i = ql pl

i+1, pl
i · g = pl

i+1, al
0 = lq ! pl

0.

For each q, the corresponding graded Hopf algebra is denoted by kZ(q).
We consider in the following lemma the algebraic side of kZ(q). The facts are

our starting point of the preferred deformation process.

Lemma 3.2. As an algebra, kZ(q) can be presented by generators with relations
as follows:

(1) When q = 1, the generators are g and a0, and the relations are gn
= 1 and

ga0 = a0g.

(2) When ord(q) = d > 1, the generators are g, a0 and pd
0 , and the relations are

gn
= 1, ga0 = qa0g, ad

0 = 0, a0 pd
0 = pd

0 a0 and gpd
0 = pd

0 g.

Proof. The claim about the generators and the relations they satisfy is direct con-
sequence of (3-1) and (3-2). In particular, for the case ord(q)= d > 1, we have

(3-3) (pd
0 )

l
= pdl

0 and pdl
0 a j

0 = j !q p j+dl
0 .

It suffices to prove conversely that the relations are enough to define kZ(q).
Let H(q) denote the algebra defined in the lemma. To avoid confusion, we use

new notations for the generators: change g to h, a0 to a, and pd
0 to p. The relations

are obtained by substituting the old notations with the new ones.
For the case q = 1, by the well-known diamond lemma [Bergman 1978] we

know that {alhi
| 0≤ i ≤ n−1, l ≥ 0} is a basis of H(1). Now define a linear map

f :H(1)→ kZ(1), alhi
7→ l! pl

i . Evidently this is a linear isomorphism. It remains
to check that it respects the multiplication. This is again direct consequence of (3-1)
and (3-2):

f ((alhi )(amh j ))= (l +m)! pl+m
i+ j = (l! p

l
i )(m! p

m
j )= f (alhi ) f (amh j ).

For the case ord(q)= d > 1, the set {pla j hi
| 0≤ i ≤ n−1, 0≤ j ≤ d−1, l ≥ 0}

is a basis of H(q), again by the diamond lemma. Define a linear map

f : H(q)→ kZ(q), pla j hi
7→ j !q p j+dl

i .
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Similarly one can verify by direct computation with the help of (3-1) and (3-3) that
this is an algebra isomorphism:

f ((pla j hi )(pl ′a j ′hi ′))= q i j ′( j + j ′)!q p j+ j ′+d(l+l ′)
i+i ′

= ( j !q p j+dl
i )( j ′!q p j ′+dl ′

i ′ )

= f (pla j hi ) f (pl ′a j ′hi ′). �

Now we are ready to state the main result of this section. We classify all the
(nongraded) Hopf structures on the path coalgebra kZ.

Theorem 3.3. Let H be a Hopf structure on kZ with gr H ∼= kZ(q). Then as
algebra, it can be presented by generators and relations as follows:

(1) If q = 1, the generators are g and a0; the relations are gn
= 1 and ga0 = a0g.

In particular, the Hopf algebra H is isomorphic to kZ(1).

(2) If ord(q) = n, the generators are g, a0 and pn
0 ; the relations are gn

= 1,
an

0 = 0, ga0 = qa0g, gpn
0 = pn

0 g and a0 pn
0 − pn

0a0 = λa0 with some λ ∈ k.

(3) If 1 < ord(q) = d < n with n 6= 2d , the generators are g, a0 and pd
0 ; the

relations are gn
= 1, ad

0 = 0, ga0 = qa0g, gpd
0 = pd

0 g and a0 pd
0 − pd

0 a0 = 0.
In other words, the Hopf algebra H is isomorphic to kZ(q).

(4) If n=2d is even and ord(q)=d , the generators are g, a0 and pn
0 ; the relations

are gn
= 1, ad

0 = µ(1− gd), ga0 = qa0g, gpd
0 = pd

0 g and a0 pd
0 − pd

0 a0 =

(µ(1− q)/(d − 1)q)a0(1+ gd) with some µ ∈ k.

Proof. The proof will be separated into several steps. The main idea is to determine
all the possible preferred deformations from the graded ones, with help from the
quiver.

Part (1): q = 1. In this case H is generated by g and a0 by Lemma 3.2(1). We
only need to give all the possible relations that involve them. It suffices to consider
all the possible preferred deformations of the graded generating relations. In this
situation, we need to determine the lower terms, that is, = ga0g−1

− a0. Since
1(g · a0 · g−1) = 1(g)1(a0)1(g−1) = g · a0 · g−1

⊗ 1+ g⊗ g · a0 · g−1 , we can
conclude that g · a0 · g−1

∈
g(kZ)1; hence g · a0 · g−1

− a0 = λ(1− g) for some
λ ∈ k. The relation gn

= 1 is stable under deformation. Note that

a0 = gn
· a0 · g−n

= a0+ nλ(1− g).

This forces λ= 0. Hence there are no nontrivial preferred deformations for kZ(1).

Part (2): ord(q) = n. If gr H ∼= kZ(q), then H is generated by g, a0 and pn
0 by

Lemma 3.2(2). We again need to determine all the possible preferred deformations
of the graded generating relations in Lemma 3.2(2).
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First, the relation ga0 = qa0g might be deformed to ga0g−1
= qa0+ α(1− g)

for some α ∈ k. Let ã0 = a0 − (α/(1− q))(1− g); then we have gã0g−1
= qã0.

Set λ = α/(1− q) and f 1
λ as in Lemma 3.1. It follows that the map f 1

λ can be
extended to a coalgebra automorphism F1

λ of kZ. Now the original Hopf structure
can be transported through F1

λ to one with ga0 = qa0g. By iterative application of
the lemma, we can have through coalgebra automorphism (or base change)

(3-4) a0gi
= ai , al

0gi
= lq ! pl

i for i = 0, 1, . . . , n− 1, l = 1, . . . , n− 1.

Note that under such coalgebra automorphisms, the new elements g, a0 and pn
0 are

generators of H all the same according to Lemma 3.2.
Second, consider the relation an

0 = 0. To see to what it may be deformed to, we
should look at 1(an

0 ). By the Gaussian binomial formula (see for example [Kassel
1995, Proposition IV.2.2]), we have

1(an
0 )= (1(a0))

n
= (a0⊗1+g⊗a0)

n
=

n∑
i=0

(n
i

)
q
ai

0gn−i
⊗an−i

0 = an
0⊗1+1⊗an

0 .

It follows that an
0 = 0 since in kZ there is no loop attached to 1.

Finally we consider the relations involved pn
0 . Similarly, by

(3-5) 1(gpn
0 − pn

0 g)= (gpn
0 − pn

0 g)⊗ g+ g⊗ (gpn
0 − pn

0 g),

we have gpn
0 − pn

0 g = 0. By (3-4) and (3-5) we have

1(a0 pn
0)=1(a0)1(pn

0)= (a0⊗ 1+ g⊗ a0)

n∑
l=0

pn−l
l ⊗ pl

0

=

n∑
l=0

a0 pn−l
l ⊗ pl

0+

n∑
l=0

gpn−l
l ⊗ a0 pl

0

=

n∑
l=1

pn+1−l
l ⊗ pl

0+ a0 pn
0 ⊗ 1+ gn+1

⊗ a0 pn
0 ,

1(pn
0a0)=1(pn

0)1(a0)=
( n∑

l=0

pn−l
l ⊗ pl

0

)
(a0⊗ 1+ g⊗ a0)

=

n∑
l=0

pn−l
l a0⊗ pl

0+

n∑
l=0

pn−l
l g⊗ pl

0a0

=

n∑
l=1

pn+1−l
l ⊗ pl

0+ pn
0a0⊗ 1+ gn+1

⊗ pn
0a0.

Let [a0, pn
0 ]=a0 pn

0− pn
0an

0 . Then the previous equations give rise to1([a0, pn
0 ])=

[a0, pn
0 ]⊗1+g⊗[a0, pn

0 ]. Now from the structure of the space of (1, g)-primitive
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elements of kZ, we have [a0, pn
0 ]=λa0+µ(1−g) for some λ,µ∈ k. By induction,

one gets an
0 pn

0 = pn
0an

0 + nλan
0 + nµan−1

0 . With (3-4) and (3-5), this forces µ= 0.

Part (3): 1< ord(q)= d < n. Now assume gr H ∼= kZ(q), so that H is generated
by g, a0 and pd

0 . Repeating the argument that proved Theorem 3.3(2), we can
assume without loss of generality for i = 0, 1, . . . , n−1 and l = 1, . . . , d−1 that

(3-6) ga0 = qa0g, a0gi
= ai , al

0gi
= lq ! pl

i .

Consider 1(ad
0 ). By the Gaussian binomial formula again, we have

1(ad
0 )= (1(a0))

d
= (a0⊗ 1+ g⊗ a0)

d

=

d∑
i=0

(d
i

)
q
ai

0gd−i
⊗ ad−i

0 = ad
0 ⊗ 1+ gd

⊗ ad
0 .

Since in kZ there is no arrow going from 1 to gd , it follows that

(3-7) ad
0 = µ(1− gd) for some µ ∈ k.

We continue to consider the relations involving pd
0 . By

(3-8) 1(gpd
0 − pd

0 g)= (gpd
0 − pd

0 g)⊗ g+ gd+1
⊗ (gpd

0 − pd
0 g),

it follows that gpd
0 − pd

0 g = ν(g − gd+1) for some ν ∈ k. By induction we have
gn pd

0 − pd
0 gn
= nν(1−gd). Since gn

= 1, we conclude that ν = 0 and gpd
0 = pd

0 g.
Finally we consider 1([a0, pd

0 ]). By (3-6), (3-7) and (3-8) we have

1(a0 pd
0 )=1(a0)1(pd

0 )

= (a0⊗ 1+ g⊗ a0)
( d∑

l=0

pd−l
l ⊗ pl

0

)

=

d∑
l=0

a0 pd−l
l ⊗ pl

0+

d∑
l=0

gpd−l
l ⊗ a0 pl

0

=

d∑
l=1

pd+1−l
l ⊗ pl

0+ a0 pd
0 ⊗ 1+ gd+1

⊗ a0 pd
0

+ a0 pd−1
1 ⊗ a0+ gp1

d−1⊗ a0 pd−1
0

=

d∑
l=1

pd+1−l
l ⊗ pl

0+ a0 pd
0 ⊗ 1+ gd+1

⊗ a0 pd
0

+
µ

(d − 1)q !
(g− gd+1)⊗ a0+

qµ
(d − 1)q !

p1
d ⊗ (g− gd+1)
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and

1(pd
0 a0)=1(pd

0 )1(a0)

=

( d∑
l=0

pd−l
l ⊗ pl

0

)
(a0⊗ 1+ g⊗ a0)

=

d∑
l=0

pd−l
l a0⊗ pl

0+

d∑
l=0

pd−l
l g⊗ pl

0a0

=

d∑
l=1

pd+1−l
l ⊗ pl

0+ pd
0 a0⊗ 1+ gd+1

⊗ pd
0 a0

+ pd−1
1 a0⊗ a0+ p1

d−1g⊗ pd−1
0 a0

=

d∑
l=1

pd+1−l
l ⊗ pl

0+ a0 pd
0 ⊗ 1+ gd+1

⊗ a0 pd
0

+
qµ

(d − 1)q !
(g− gd+1)⊗ a0+

µ

(d − 1)q !
p1

d ⊗ (g− gd+1).

These equations lead to

1
(
[a0, pd

0 ] −
µ(1− q)
(d − 1)q !

(a0+ p1
d)
)

=

(
[a0, pd

0 ]−
µ(1− q)
(d − 1)q !

(a0+ p1
d)
)
⊗1+gd+1

⊗

(
[a0, pd

0 ]−
µ(1− q)
(d − 1)q !

(a0+ p1
d)
)
.

It follows as before that

[a0, pd
0 ] =

µ(1− q)
(d − 1)q !

a0(1+ gd)+ λ(1− gd+1) for some λ ∈ k.

Again by induction we have

ad
0 pd

0 = pd
0 ad

0 + d
µ2(1− q)
(d − 1)q !

(1− g2d)+ dλad−1
0 .

So µ= λ= 0 if n 6= 2d , and λ= 0 otherwise. Now we can conclude that

(3-9) [a0, pd
0 ] =

{µ(1−q)
(d−1)q !

a0(1+ gd) if n = 2d,

0 otherwise.

Remaining cases. So far we have proved that the Hopf structures on kZ must be
generated by g, a0 and pd

0 (where d = ord(q)) and must satisfy the relations
presented in Theorem 3.3. To complete the proof, it suffices to verify that these
relations are enough to define Hopf structures on kZ. We only need to prove the
cases of ord(q) = n and ord(q) = n/2, since otherwise the Hopf structures are
graded, as treated in Lemma 3.2.
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The check is sort of routine, and similar to that of the graded case. We only
prove the case ord(q)= n. The case ord(q)= n/2 can be done similarly. Assume
an algebra C(q, λ) is defined by generators h, a and p with relations

hn
= 1, an

= 0, ha = qah, hp = ph, ap− pa = λa.

By the diamond lemma, the algebra has

{pka j hi
| 0≤ i, j ≤ n− 1, k ≥ 0}

as a basis. Since the Hopf algebra H has a similar basis

{(pn
0)

ka j
0 gi
| 0≤ i, j ≤ n− 1, k ≥ 0},

we can define a linear isomorphism F : C(q, λ) → H by sending pka j hi to
(pn

0)
ka j

0 gi . It is an algebra map by direct calculation. �

We summarize in the following all the Hopf algebra structures living on kZ.
We denote by kZ(n, q, λ) the Hopf algebra defined by Theorem 3.3(2) and by
kZ(n/2, q, µ) the Hopf algebra defined by Theorem 3.3(4). The check of the
statements about Hopf algebra isomorphism is routine and omitted.

Theorem 3.4. Let Z be a basic n-cycle and kZ the associated path coalgebra.

(1) If n is odd, then the graded Hopf structure on kZ is given by kZ(q), and
the nongraded one is kZ(n, q, λ). We have the Hopf algebra isomorphisms
kZ(q) ∼= kZ(q ′) if and only if q = q ′, and kZ(n, q, λ) ∼= kZ(n, q ′, λ′) if and
only if q = q ′ and there exists some 0 6= ζ ∈ k such that λ= ζ nλ′.

(2) If n is even, then the graded Hopf structure on kZ is given by kZ(q), and
the nongraded ones are kZ(n, q, λ) and kZ(n/2, q, µ). We have the Hopf
algebra isomorphism kZ(n/2, q, µ) ∼= kZ(n/2, q ′, µ′) if and only if q = q ′

and there exists some 0 6= ζ ∈ k such that µ= ζ n/2µ′.

4. Hopf structures on the infinite linear quiver

Let G = 〈g〉 be an infinite cyclic group and let A be the Hopf quiver Q(G, g).
Then A is the infinite linear quiver. This is the only possible way to view it as a
Hopf quiver. Let ei denote the arrow gi

→ gi+1 and pl
i the path ei+l−1 · · · ei of

length l ≥ 1, for each i ∈ Z. The notation p0
i is understood as ei .

As in the case of the basic cycle, we need a lemma to make an appropriate
base change in a later argument. The proof, omitted, is almost identical to that of
Lemma 3.1.
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Lemma 4.1. Let kA[d] be the subcoalgebra
⊕d

i=0 kAi . For any λ ∈ k, the linear
map

f d
λ : kA[d] → kA[d],

pl
i 7→ pl

i for all i, 0≤ l ≤ d − 1,

pd
0 7→ pd

0 + λ(1− gd),

pd
i 7→ pd

i for i 6= 0.

defines a coalgebra automorphism of kA[d]. There exists a coalgebra automor-
phism Fd

λ : kA→ kA whose restriction to kA[d] is f d
λ .

We next collect some useful results about graded Hopf structures on kA. These
are in bijection with the left kG-module structures on ke0, in turn with nonzero
elements of k. Assume g . e0 = qe0 for some 0 6= q ∈ k. The corresponding kG-
Hopf bimodule is ke0⊗ kG. We identify ei and e0⊗ gi , and in this way we have
a kG-Hopf bimodule structure on kA1. We denote the corresponding graded Hopf
algebra by kA(q). The next lemma gives the presentation of kA(q) by generators
with relations. Its proof is like that of Lemma 3.2.

Lemma 4.2. The algebra kA(q) can be presented via generators with relations:

(1) If q = 1, the generators are g, g−1 and e0; the relations are gg−1
= 1= g−1g

and ge0 = e0g.

(2) If q 6= 1 is not a root of unity, generators are g, g−1 and e0; the relations are
gg−1

= 1= g−1g and ge0 = qe0g.

(3) If q 6= 1 is a root of unity of order d, the generators are g, g−1, e0 and pd
0 ;

the relations are gg−1
= 1 = g−1g, ed

0 = 0, ge0 = qe0g, gpd
0 = pd

0 g and
e0 pd

0 = pd
0 e0.

With the algebraic characterization of kA(q), we can proceed to the possible
preferred deformations. The Hopf structures on kA are classified as follows.

Theorem 4.3. Let H be a Hopf structure on kA with gr H ∼= kA(q). Then as
algebra, it can be presented by generators and relations:

(1) If q = 1, the generators are g, g−1 and e0; the relations are gg−1
= 1= g−1g

and ge0g−1
= e0+ λ(1− g) with λ ∈ {0, 1}.

(2) If q 6= 1 and is not a root of unity, the generators are g, g−1 and e0; the
relations are gg−1

=1= g−1g and ge0=qe0g. In particular, H is isomorphic
to kA(q).

(3) If q 6= 1 is a root of unity of order d, the generators are g, g−1, e0 and pd
0 ;

the relations are gg−1
= 1 = g−1g, ed

0 = 0, ge0 = qe0g, e0 pd
0 = pd

0 e0 and
gpd

0 − pd
0 g = λ(g− gd+1) with λ ∈ k.

Proof. The idea of the proof is the same as in the basic cycle case.
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Part (1): q = 1. Assume that H is a Hopf algebra on kA with gr H ∼= kA(1). Then
as algebra, it is generated by g, g−1 and e0 according to Lemmas 2.1 and 4.2. So in
order to get the defining relations, all we need to do is determine the deformations
of ge0g−1

= e0. By

1(ge0g−1)= (ge0g−1)⊗ 1+ g⊗ (ge0g−1),

we have ge0g−1
= e0+λ(1− g) for some λ ∈ k. If λ 6= 0, then letting E := e0/λ,

we have gEg−1
= E + (1− g). Note that H is generated by g and E ; therefore

through the coalgebra automorphism

F :kA→kA,

gi
7→ gi for all i ∈ Z,

e0 7→ e0/λ, ei 7→ ei for all i 6= 0,

pl
i 7→ λt pl

i if e0 appears t times in pl
i , for all i ∈ Z and l ≥ 2,

we can always reduce the relation in H to the equation ge0g−1
= e0+(1−g) when

λ 6= 0.
On the contrary, as in the argument of the remaining cases on page 326, it is not

difficult to verify that the relations in Theorem 4.3(1) are actually enough to define
the algebra structure of H .

Part (2): q 6= 1 is not a root of unity. Assume that H is a Hopf algebra on kA

with gr H ∼= kA(q). Again, as algebra, it is generated by g, g−1 and e0 according
to Lemmas 2.1 and 4.2. So we need to determine the deformation of ge0g−1

=

qe0 to get defining relations for H . Similarly to the previous argument, we have
ge0g−1

= qe0+λ(1−g) for some λ∈ k. Now let ẽ0= e0+λ/(1−q); then we have
gẽ0g−1

= qẽ0. By Lemma 4.1, there is a coalgebra isomorphism for the coalgebra
kA that sends e0 to ẽ0. Now under the isomorphism, the original Hopf structure
can be transported to a new one with relation ge0g−1

= qe0. So in this case, the
Hopf structures are graded, and we are done with part (2) of the theorem.

Part (3): q 6= 1 is a root of unity of order d. Assume that H is a Hopf algebra on
kA with gr H ∼= kZ(q). In this situation, the Hopf algebra H is generated by g,
g−1, e0 and pd

0 . By a similar argument we have in the first place

ge0 = qe0g, ed
0 = λ(1− gd), gpd

0 g−1
= pd

0 +α(1− gd),

[e0, pd
0 ] =

λ(1− q)
(d − 1)q !

e0(1+ gd)+µ(1− gd+1)

for some λ, α, µ ∈ k. By induction we have

ed
0 pd

0 = pd
0 ed

0 + d
λ(1− q)
(d − 1)q !

e0(1+ gd)+ dµed−1
0 .
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Combining these with the previous equalities, we have

λdα(gd
− g2d)+ d

λ2(1− q)
(d − 1)q !

(1− g2d)+ dµed−1
0 = 0.

It follows from this equality that λ= µ= 0. By a similar argument we can prove
the relations are enough defining relations for H . �

Finally, we summarize all the Hopf structures arising from the infinite linear
quiver A. Let kA(1, λ) be the Hopf algebra defined by Theorem 4.3(1), and
kA(d, q, λ) the Hopf algebra defined by Theorem 4.3(3). The condition of iso-
morphism is also given.

Theorem 4.4. Let A be the infinite linear quiver and kA be the associated path
coalgebra. All the Hopf algebra structures are given by kA(q) with 0 6= q ∈ k an
arbitrary element (graded), kA(1, λ) and kA(d, q, λ) with q 6= 1 a primitive d-th
root of unity (nongraded). We have the Hopf algebra isomorphism kA(q)∼= kA(q ′)
if and only if q = q ′; the isomorphism kA(1, λ) ∼= kA(1, λ′) if and only if λ = λ′;
and kA(d, q, λ)∼= kA(d ′, q ′, λ′) if and only if d = d ′, q = q ′ and λ= λ′.

5. Applications

In this section, we directly apply our classification results to bialgebras of type one
of Nichols [1978], and simple-pointed Hopf algebras of Radford [1999].

Recall that the bialgebras of type one in the sense of Nichols are pointed Hopf
algebras that are generated as algebras by group-like and skew-primitive elements.
In the quiver terminology, such Hopf algebras live in Hopf quivers and as algebras
are generated by vertices and arrows. We are going to investigate all the possible
bialgebras of type one living in the Hopf quivers of form Q(〈g〉, g). Not all pointed
Hopf algebras are bialgebras of type one. Later on we will see that in general quiver
Hopf algebras are not so either.

The case of loop quiver is trivial. The quiver Hopf algebra is generated by the
only vertex and arrow, and hence is a bialgebra of type one. For the cases of basic
n-cycles (n ≥ 2) and the infinite linear quiver, things turn out to be very different.
The idea of classifying bialgebras of type one is similar to those of quiver Hopf
algebras. First we classify the graded ones, and then determine all the possible
deformations.

We deal with the basic cycle case first. Keep the notations of Section 3. The
graded bialgebras of type one are the graded sub-Hopf algebras on Hopf quivers
generated by vertices and arrows, so the classification of such algebras can be
obtained as a direct consequence of Lemma 3.2.

Lemma 5.1. Let BZ(q) denote the sub-Hopf algebra of kZ(q) generated by ver-
tices and arrows.
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(1) If q = 1, then BZ(q)∼= kZ(1).

(2) If ord(q) = d > 1, then BZ(q) can be presented by generators g and a0 with
relations gn

= 1, ad
0 = 0 and ga0 = qa0g.

When q is a nontrivial root of unity, the bialgebra of type one BZ(q) is a very
interesting Hopf algebra. When ord(q) = n, it is the well-known Taft algebra
[1971]. It also appears as the Borel subalgebra of Lusztig’s small quantum sl2
[1990]. For general ord(q) = d , the algebra BZ(q) is a generalization of the Taft
algebra.

It follows directly from Lemmas 3.2 and 5.1 that the only finite-dimensional
subcoalgebras of kZ that admit Hopf algebra structures are kZ[d] with d = ord(q),
where q is a nontrivial n-th root of unity. Hence d is a factor of n. This is the result
[Chen et al. 2004, Theorem 3.1], which plays an important role in classifying the
monomial Hopf algebras. The argument in this paper simplifies the old one.

For the nongraded bialgebras of type one living in the Hopf quiver Z, it suffices
to determine the preferred deformations of BZ(q). This actually was done before,
though not in terms of deformation. It turns out that these are all the connected
monomial Hopf algebras. For completeness, we include the result here.

Theorem 5.2 [Chen et al. 2004, Theorem 3.6]. All the possible preferred deforma-
tions of BZ(q) can be presented by generators g and a, with relations

gn
= 1, ad

= µ(1− gd), ga = qag,

where µ ∈ {0, 1}.

Now we consider the case of the infinite linear quiver. Keep the notation of
Section 4. First by Lemma 4.2, we can classify the graded bialgebras of type one.

Lemma 5.3. Let BA(q) denote the sub-Hopf algebra of kA(q) generated by ver-
tices and arrows.

(1) If q is not a nontrivial root of unity, then BA(q)∼= kA(q).

(2) If q is a root of unity with order ord(q)= d > 1, then BA(q) can be presented
by generators g, g−1 and e0 with relations gg−1

= 1 = g−1g, ed
0 = 0 and

ge0 = qe0g.

Next we consider the possible deformations of BA(q). In the case that q is not
a nontrivial root of unity, this was done in Theorem 4.3. When q is a root of unity
with order ord(q)=d>1, it suffices to deform the relations ed

0 =0 and ge0=qe0g.
By the argument from the proofs of Theorem 3.3(2) and Theorem 4.3(2), we can
always preserve the relation ge0= qe0g, while deforming ed

0 = 0 to ed
0 =λ(1−gd).

In this situation, as coalgebra BA(q) is identical to the subcoalgebra kA[d−1] of
the path coalgebra kA, namely the subcoalgebra spanned by paths of length strictly
less than d . We record the results as follows.
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Theorem 5.4. If H is a bialgebra of type one with Q(H)=A, then either

(1) H = kA(q), where q is not a nontrivial root of unity, or

(2) H can be presented by generators g, g−1 and e with relations gg−1
= 1 =

g−1g, ge= qeg and ed
=µ(1−gd), where q is a root of unity of order d > 1

and µ ∈ {0, 1}.

When q is not a root of unity, the Hopf algebra kA(q) is the well-known Borel
subalgebra of the quantum group Uν(sl2), where ν =

√
q . When q is a nontrivial

root of unity, the Hopf algebra in (2), denoted by BA(q, µ), is closely related to the
(Borel subalgebra of) the quantum group Uν(sl2) of De Concini and Kac [1990]
at roots of unity.

By comparing the previous classification of bialgebras of type one with the
classification of quiver Hopf algebras, it is clear that there is no hope to extend
the Gabriel-type theorem of van Oystaeyen and Zhang to nongraded pointed Hopf
algebras. For example, when q is a nontrivial root of unity, the Hopf algebras
BZ(q) and BA(q) do have nontrivial deformations, while the quiver Hopf algebras
kZ(q) and kA(q) do not in general. In other words, these Hopf algebras living
in a proper subcoalgebra of kZ and kA cannot be extended to the whole path
coalgebras; hence they are not sub-Hopf algebras of any Hopf algebra structures
on the path coalgebras of the corresponding Hopf quivers.

Now we apply our results to simple-pointed Hopf algebras. A Hopf algebra H
is said to be simple pointed if it is pointed and not cocommutative, and if L being a
proper sub-Hopf algebra of H implies L⊆kG(H). Very naturally the “simpleness”
of such Hopf algebras can be visualized by their corresponding Hopf quivers. The
definition of simple-pointed Hopf algebras adopted here is from [Zhang 2006],
which includes the infinite-dimensional situation. Zhang obtained the complete
classification by methods different from ours.

Theorem 5.5. A Hopf algebra H is simple pointed if and only if its graded version
gr H is simple pointed, if and only if it is a bialgebra of type one living in either
the Hopf quiver Z or A. Hence it is either kZ(1), BZ(q, µ) with q a root of unity
of order greater than 1 and µ ∈ {0, 1}, kA(q) with q not a nontrivial root of unity,
kA(1, 1), or BA(q, µ) with q a root of unity of order greater than 1 and µ∈ {0, 1}.

Proof. Assume that H is simple-pointed. Then the Hopf quiver Q(H) must be
connected. It is not hard to deduce from the definition of simple-pointed Hopf
algebras that there is exactly one arrow going from the unit of the group G(H) to
some nonunit element. So by the definition of Hopf quiver it follows at once that
G(H) must be a cyclic group and Q(H) must be either Z or A. Now the theorem
follows directly from Lemma 5.1, Theorem 5.2, Lemma 5.3, and Theorem 5.4. �
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